

Benchmarking parallel optimization methods in computational systems biology

David R. Penas¹, Stephan Grein², Daniel Weindl³, Julio R. Banga¹, Jan Hasenauer²

- (1) Computational Biology Lab, MBG-CSIC, Pontevedra 36143, Galicia, Spain
- (2) Life and Medical Sciences (LIMES) Institute, Rheinische Friedrichs-Wilhelms-Universität Bonn, 53115, Bonn, Germany
- (3) Computational Health Center, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany

Large-scale dynamic models in systems biology

Systems Biology:

New knowledge about complex biological systems by combining:

- experimental data
- mathematical modeling
- advanced computational techniques

Model calibration or parameter estimation

They can be formulated as mathematical optimization problems:

- finding the parameters of a dynamic model that give the best fit to a set of time-series experimental data
- minimizing a cost function that measures the goodness of this fit

Class of optimization problems?

► RMSE

NLP-DO

- non-convex
- bound constraints
- multiple local optima
- NP-hard

Solvers

- metaheuristics
- multistart strategies

HPC techniques

Systematic comparison of optimizers

- Comparison of different solvers, executed on a parallel machine
- The main question we want to address: Given a set of P problems and a set of S solvers, and given pre-specified parallel computational resources (MP machine processors and a budget of computational time, T hours), which are the most efficient and robust solvers?
- Efficient: faster in getting the best solution
- Robust: able to solve most problems within the computational budget defined by MP*T

Parallel optimization methods

pyPESTO: Parameter EStimation TOolbox for python

S. Leonard, D. Weindl, and J. Hasenauer (2021)."Efficient gradient-based parameter estimation for dynamic models using qualitative data. *Bioinformatics* 37. 23: 4493-4500.

parPE: parameter estimation for PEtab

L. Schmiester, Y. Schälte, F. Fröhlich, J. Hasenauer, and D. Weindl. (2019) Efficient parameterization of large-scale dynamic models based on relative measurements. *Bioinformatics* 36, 594–602.

saCeSS: parameter estimation for PEtab

D.R. Penas, P. González, J.A. Egea, R. Doallo, and J.R. Banga, (2017). Parameter estimation in large-scale systems biology models: a parallel and self-adaptive cooperative strategy. *BMC bioinformatics*, *18*(1), 1-24.

pyPESTO

PEtab benchmarks considered

 PEtab - a data format for specifying parameter estimation problems in systems biology.

PEtab	Model Reac netwo	Experimental Conditions tion ork • Simulation • Condition-specification • Condition-speci- parameters	Observab
Grouping model and other tables Combination of multiple files	Measure- ments • Measured • Preequilib Noise • Output pa	Parameters Ivalues iration rameters	Visualizat

	benchmark features						
problem		dynamic	observed	experimental	data	noise	
name	parameters	states	states	conditions	points	distribution	
	subset I						
Blasi	9	16	15	1	252	log-normal	
Boehm	9	8	3	1	48	normal	
Borghans	23	3	1	1	111	log10-normal	
Brannmark	22	9	3	8	43	normal	
Bruno	13	7	5	6	77	normal	
Crauste	12	5	4	1	21	normal	
Elowitz	21	8	1	1	58	log10-normal	
Fiedler	22	6	2	3	72	normal	
Giordano	50	13	7	1	313	normal	
Laske	13	41	13	3	42	normal; log-normal	
Okuonghae	16	9	2	1	92	normal	
Oliveira	12	9	2	1	120	normal	
Perelson	3	4	1	1	16	log10-normal	
Rahman	9	7	1	1	23	normal	
Salazar	6	75	3	4	18	normal	
Schwen	30	11	4	19	286	log10-normal	
Sneyd	15	6	1	9	135	normal	
Weber	36	7	8	2	135	normal	
Zhao	28	5	1	7	82	normal	
	subset II						
Alkan	56	36	12	73	1733	normal	
Bachmann	113	25	20	36	541	normal; log10-normal	
Beer	72	4	2	19	27132	normal	
Chen	155	500	3	4	120	normal	
Fujita	19	9	3	6	144	normal	
Isensee	46	25	3	123	687	normal	
Lucarelli	84	33	65	16	1755	normal; log10-normal	
Raimundez	136	22	79	170	627	normal	
Zheng	46	15	15	1	60	normal	

Benchmarks were divided in two subsets:

Observation function

- I-easier
 - Processors: 12.
 - **Execution time:** 3 hours.
- II-harder
 - Processors: 24.
 - Execution time: 9 hours.

Comparison methodology & infrastructure

- We have tested 37 solvers:
 - 3 based on SaCeSS configurations
 - 1 using the parallel multistart implemented in parPE+Ipopt
 - 33 solvers using the parallel pyPESTO multistart method with different solvers
- Each solver was executed 10 times (jobs) for each problem
- All solvers were run in a parallel setup, we used the same number of parallel processors in each job.
- In adition, we used the same computational infrastructure (Finisterrae III), and the same MPI implementation (openmpi 4.1.1) and compilers (gcc 10.1.0)

Summary of results: the best solution achieved.

Conclusions

- Considering most problems solved (best or near-best solution achieved),
 SaCeSS+Ipopt is the winner
- SaCeSS+DHC and SaCeSS without local solver also have a good performance in terms of the best solution reached and robustness
- Multistart of fides and cmaes was competitive in some benchmarks, with a small dispersion in the results. An integration between SaCeSS+fides looks promising.
- Cooperative methods such as SaCeSS are a good alternative to solve complex problems in the calibration of large-scale dynamic models in systems biology

Acknowledgements

