

Alfor coronary artery segmentation

Belén Serrano Antón

AVOIDING INVASIVE TESTS

CORONARY TREE SEGMENTATION

	Manual	Al
Time	~2h	~15min
User dependent		\times
Needs training		
Save costs	\times	
Needs postprocesing	\times	\

AI SOLUTION

COMPUTATIONAL RESOURCES

Ournetworks

Training data

o 2D

 \circ 2D + TL

o 2,5D

o EfficientNet + TL

o 3D

~16 K im a ges (200x200) Entire heart ~50 K im a ges (32x32x32) Bloks (+ its corresponding masks)

Computation time

Entire heart

CPU: 4d GPU: 3h

Bloks

CPU: no estimation

GPU: <15 h

FLUID SIMULATION

Our software

StarCCM

Computation time

CPU:

 \sim 15 m in (CESGA)

~lh (personal computer)

Queue system

THANKS!

Do you have any questions? belenserrano.anton@usc.es

THREE REGIONS

RESULTS

Radial plots for each of the three regions. (a) Proximal region. (b) Middle region. (c) Distal region. The parameters represented are: dice similarity coefficient (DSC), Sensitivity, false negative rate (FNR) and critical success index (CSI). In purple 2D from scratch UNet, in blue 2D pre-trained UNet, in orange 2D pre-trained efficient UNet and in green 3D UNet.